Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(5): 168313, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839679

RESUMO

The phytochrome superfamily comprises three groups of photoreceptors sharing a conserved GAF (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) domain that uses a covalently attached linear tetrapyrrole (bilin) chromophore to sense light. Knotted red/far-red phytochromes are widespread in both bacteria and eukaryotes, but cyanobacteria also contain knotless red/far-red phytochromes and cyanobacteriochromes (CBCRs). Unlike typical phytochromes, CBCRs require only the GAF domain for bilin binding, chromophore ligation, and full, reversible photoconversion. CBCRs can sense a wide range of wavelengths (ca. 330-750 nm) and can regulate phototaxis, second messenger metabolism, and optimization of the cyanobacterial light-harvesting apparatus. However, the origins of CBCRs are not well understood: we do not know when or why CBCRs evolved, or what selective advantages led to retention of early CBCRs in cyanobacterial genomes. In the current work, we use the increasing availability of genomes and metagenome-assembled-genomes from early-branching cyanobacteria to explore the origins of CBCRs. We reaffirm the earliest branches in CBCR evolution. We also show that early-branching cyanobacteria contain late-branching CBCRs, implicating early appearance of CBCRs during cyanobacterial evolution. Moreover, we show that early-branching CBCRs behave as integrators of light and pH, providing a potential unique function for early CBCRs that led to their retention and subsequent diversification. Our results thus provide new insight into the origins of these diverse cyanobacterial photoreceptors.

2.
PNAS Nexus ; 2(5): pgad131, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37152672

RESUMO

Photosynthesis relies on chlorophylls, which are synthesized via a common tetrapyrrole trunk pathway also leading to heme, vitamin B12, and other pigmented cofactors. The first committed step for chlorophyll biosynthesis is insertion of magnesium into protoporphyrin IX by magnesium chelatase. Magnesium chelatase is composed of H-, I-, and D-subunits, with the tetrapyrrole substrate binding to the H-subunit. This subunit is rapidly inactivated in the presence of substrate, light, and oxygen, so oxygenic photosynthetic organisms require mechanisms to protect magnesium chelatase from similar loss of function. An additional protein, GUN4, binds to the H-subunit and to tetrapyrroles. GUN4 has been proposed to serve this protective role via its ability to bind linear tetrapyrroles (bilins). In the current work, we probe the origins of bilin binding by GUN4 via comparative phylogenetic analysis and biochemical validation of a conserved bilin-binding motif. Based on our results, we propose that bilin-binding GUN4 proteins arose early in cyanobacterial evolution and that this early acquisition represents an ancient adaptation for maintaining chlorophyll biosynthesis in the presence of light and oxygen.

3.
Proc Natl Acad Sci U S A ; 120(17): e2300770120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071675

RESUMO

Terrestrial ecosystems and human societies depend on oxygenic photosynthesis, which began to reshape our atmosphere approximately 2.5 billion years ago. The earliest known organisms carrying out oxygenic photosynthesis are the cyanobacteria, which use large complexes of phycobiliproteins as light-harvesting antennae. Phycobiliproteins rely on phycocyanobilin (PCB), a linear tetrapyrrole (bilin) chromophore, as the light-harvesting pigment that transfers absorbed light energy from phycobilisomes to the chlorophyll-based photosynthetic apparatus. Cyanobacteria synthesize PCB from heme in two steps: A heme oxygenase converts heme into biliverdin IXα (BV), and the ferredoxin-dependent bilin reductase (FDBR) PcyA then converts BV into PCB. In the current work, we examine the origins of this pathway. We demonstrate that PcyA evolved from pre-PcyA proteins found in nonphotosynthetic bacteria and that pre-PcyA enzymes are active FDBRs that do not yield PCB. Pre-PcyA genes are associated with two gene clusters. Both clusters encode bilin-binding globin proteins, phycobiliprotein paralogs that we designate as BBAGs (bilin biosynthesis-associated globins). Some cyanobacteria also contain one such gene cluster, including a BBAG, two V4R proteins, and an iron-sulfur protein. Phylogenetic analysis shows that this cluster is descended from those associated with pre-PcyA proteins and that light-harvesting phycobiliproteins are also descended from BBAGs found in other bacteria. We propose that PcyA and phycobiliproteins originated in heterotrophic, nonphotosynthetic bacteria and were subsequently acquired by cyanobacteria.


Assuntos
Cianobactérias , Ficobiliproteínas , Humanos , Filogenia , Ficobiliproteínas/metabolismo , Oxirredutases/metabolismo , Ecossistema , Pigmentos Biliares/química , Cianobactérias/química
4.
Photochem Photobiol Sci ; 21(4): 471-491, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35411484

RESUMO

Photoreceptors in the phytochrome superfamily use 15,16-photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties. Canonical phytochromes include master regulators of plant growth and development in which light signals trigger interconversion between a red-absorbing 15Z dark-adapted state and a metastable, far-red-absorbing 15E photoproduct state. Distantly related cyanobacteriochromes (CBCRs) carry out a diverse range of photoregulatory functions in cyanobacteria and exhibit considerable spectral diversity. One widespread CBCR subfamily typically exhibits a red-absorbing 15Z dark-adapted state similar to that of phytochrome that gives rise to a distinct green-absorbing 15E photoproduct. This red/green CBCR subfamily also includes red-inactive examples that fail to undergo photoconversion, providing an opportunity to study protein-chromophore interactions that either promote photoisomerization or block it. In this work, we identified a conserved lineage of red-inactive CBCRs. This enabled us to identify three substitutions sufficient to block photoisomerization in photoactive red/green CBCRs. The resulting red-inactive variants faithfully replicated the fluorescence and circular dichroism properties of naturally occurring examples. Converse substitutions restored photoconversion in naturally red-inactive CBCRs. This work thus identifies protein-chromophore interactions that control the fate of the excited-state population in red/green cyanobacteriochromes.


Assuntos
Cianobactérias , Fotorreceptores Microbianos , Fitocromo , Proteínas de Bactérias/química , Cianobactérias/química , Fotorreceptores Microbianos/química , Fitocromo/química
5.
Cancer Res Commun ; 1(3): 148-163, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34957471

RESUMO

In cancer, missense mutations in the DNA-binding domain of TP53 are common. They abrogate canonical p53 activity and frequently confer gain-of-oncogenic function (GOF) through localization of transcriptionally active mutant p53 to non-canonical genes. We found that several recurring p53 mutations exhibit a sex difference in frequency in patients with glioblastoma (GBM). In vitro and in vivo analysis of three mutations, p53R172H, p53Y202C, and p53Y217C revealed unique interactions between cellular sex and p53 GOF mutations that determined each mutation's ability to transform male versus female primary mouse astrocytes. These phenotypic differences were correlated with sex- and p53 mutation- specific patterns of genomic localization to the transcriptional start sites of upregulated genes belonging to core cancer pathways. The promoter regions of these genes exhibited a sex difference in enrichment for different transcription factor DNA-binding motifs. Together, our data establish a novel mechanism for sex specific mutant p53 GOF activity in GBM with implications for all cancer.


Assuntos
Glioblastoma , Proteína Supressora de Tumor p53 , Animais , Camundongos , Feminino , Masculino , Proteína Supressora de Tumor p53/genética , Mutação com Ganho de Função , Recidiva Local de Neoplasia , Mutação , Glioblastoma/genética , DNA
6.
Plant Physiol ; 187(2): 632-645, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608946

RESUMO

Cyanobacteriochromes (CBCRs) are spectrally diverse photosensors from cyanobacteria distantly related to phytochromes that exploit photoisomerization of linear tetrapyrrole (bilin) chromophores to regulate associated signaling output domains. Unlike phytochromes, a single CBCR domain is sufficient for photoperception. CBCR domains that regulate the production or degradation of cyclic nucleotide second messengers are becoming increasingly well characterized. Cyclic di-guanosine monophosphate (c-di-GMP) is a widespread small-molecule regulator of bacterial motility, developmental transitions, and biofilm formation whose biosynthesis is regulated by CBCRs coupled to GGDEF (diguanylate cyclase) output domains. In this study, we compare the properties of diverse CBCR-GGDEF proteins with those of synthetic CBCR-GGDEF chimeras. Our investigation shows that natural diversity generates promising candidates for robust, broad spectrum optogenetic applications in live cells. Since light quality is constantly changing during plant development as upper leaves begin to shade lower leaves-affecting elongation growth, initiation of flowering, and responses to pathogens, these studies presage application of CBCR-GGDEF sensors to regulate orthogonal, c-di-GMP-regulated circuits in agronomically important plants for robust mitigation of such deleterious responses under natural growing conditions in the field.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Cianobactérias/enzimologia , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975960

RESUMO

Biosyntheses of chlorophyll and heme in oxygenic phototrophs share a common trunk pathway that diverges with insertion of magnesium or iron into the last common intermediate, protoporphyrin IX. Since both tetrapyrroles are pro-oxidants, it is essential that their metabolism is tightly regulated. Here, we establish that heme-derived linear tetrapyrroles (bilins) function to stimulate the enzymatic activity of magnesium chelatase (MgCh) via their interaction with GENOMES UNCOUPLED 4 (GUN4) in the model green alga Chlamydomonas reinhardtii A key tetrapyrrole-binding component of MgCh found in all oxygenic photosynthetic species, CrGUN4, also stabilizes the bilin-dependent accumulation of protoporphyrin IX-binding CrCHLH1 subunit of MgCh in light-grown C. reinhardtii cells by preventing its photooxidative inactivation. Exogenous application of biliverdin IXα reverses the loss of CrCHLH1 in the bilin-deficient heme oxygenase (hmox1) mutant, but not in the gun4 mutant. We propose that these dual regulatory roles of GUN4:bilin complexes are responsible for the retention of bilin biosynthesis in all photosynthetic eukaryotes, which sustains chlorophyll biosynthesis in an illuminated oxic environment.


Assuntos
Pigmentos Biliares/fisiologia , Chlamydomonas reinhardtii/metabolismo , Clorofila/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Cianobactérias/metabolismo , Heme Oxigenase (Desciclizante) , Peptídeos e Proteínas de Sinalização Intracelular/química , Liases/metabolismo , Protoporfirinas/química
8.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33727422

RESUMO

Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs. To elucidate the molecular basis of far-red light perception by this third frCBCR subfamily, we determined the crystal structure of the far-red-absorbing dark state of one such frCBCR Anacy_2551g3 from Anabaena cylindrica PCC 7122 which exhibits a reversible far-red/orange photocycle. Determined by room temperature serial crystallography and cryocrystallography, the refined 2.7-Å structure reveals an unusual all-Z,syn configuration of the phycocyanobilin (PCB) chromophore that is considerably less extended than those of previously characterized red-light sensors in the phytochrome superfamily. Based on structural and spectroscopic comparisons with other bilin-binding proteins together with site-directed mutagenesis data, our studies reveal protein-chromophore interactions that are critical for the atypical bathochromic shift. Based on these analyses, we propose that far-red absorption in Anacy_2551g3 is the result of the additive effect of two distinct red-shift mechanisms involving cationic bilin lactim tautomers stabilized by a constrained all-Z,syn conformation and specific interactions with a highly conserved anionic residue.


Assuntos
Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Cianobactérias/fisiologia , Modelos Moleculares , Fitocromo/química , Fitocromo/metabolismo , Conformação Proteica , Luz , Optogenética , Relação Estrutura-Atividade , Raios Ultravioleta
9.
Proc Natl Acad Sci U S A ; 117(45): 27962-27970, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106421

RESUMO

Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable interest from the optogenetic and imaging communities because of the deep penetrance of far-red light into mammalian tissue and the small size of the CBCR protein scaffold. The present studies were undertaken to determine the structural basis for far-red absorption by JSC1_58120g3, a frCBCR from the thermophilic cyanobacterium Leptolyngbya sp. JSC-1 that is a representative member of a phylogenetically distinct class. Unlike most CBCRs that bind phycocyanobilin (PCB), a phycobilin naturally occurring in cyanobacteria and only a few eukaryotic phototrophs, JSC1_58120g3's far-red absorption arises from incorporation of the PCB biosynthetic intermediate 181,182-dihydrobiliverdin (181,182-DHBV) rather than the more reduced and more abundant PCB. JSC1_58120g3 can also yield a far-red-absorbing adduct with the more widespread linear tetrapyrrole biliverdin IXα (BV), thus circumventing the need to coproduce or supplement optogenetic cell lines with PCB. Using high-resolution X-ray crystal structures of 181,182-DHBV and BV adducts of JSC1_58120g3 along with structure-guided mutagenesis, we have defined residues critical for its verdin-binding preference and far-red absorption. Far-red sensing and verdin incorporation make this frCBCR lineage an attractive template for developing robust optogenetic and imaging reagents for deep tissue applications.


Assuntos
Ficobilinas/metabolismo , Fitocromo/genética , Porfirinas/genética , Proteínas de Bactérias/metabolismo , Biliverdina/química , Cianobactérias/genética , Cianobactérias/metabolismo , Luz , Células Fotorreceptoras/metabolismo , Fotorreceptores Microbianos/química , Ficobilinas/genética , Ficocianina/genética , Ficocianina/metabolismo , Fitocromo/metabolismo , Porfirinas/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(27): 15573-15580, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571944

RESUMO

Cyanobacteriochromes (CBCRs) are small, bistable linear tetrapyrrole (bilin)-binding light sensors which are typically found as modular components in multidomain cyanobacterial signaling proteins. The CBCR family has been categorized into many lineages that roughly correlate with their spectral diversity, but CBCRs possessing a conserved DXCF motif are found in multiple lineages. DXCF CBCRs typically possess two conserved Cys residues: a first Cys that remains ligated to the bilin chromophore and a second Cys found in the DXCF motif. The second Cys often forms a second thioether linkage, providing a mechanism to sense blue and violet light. DXCF CBCRs have been described with blue/green, blue/orange, blue/teal, and green/teal photocycles, and the molecular basis for some of this spectral diversity has been well established. We here characterize AM1_1499g1, an atypical DXCF CBCR that lacks the second cysteine residue and exhibits an orange/green photocycle. Based on prior studies of CBCR spectral tuning, we have successfully engineered seven AM1_1499g1 variants that exhibit robust yellow/teal, green/teal, blue/teal, orange/yellow, yellow/green, green/green, and blue/green photocycles. The remarkable spectral diversity generated by modification of a single CBCR provides a good template for multiplexing synthetic photobiology systems within the same cellular context, thereby bypassing the time-consuming empirical optimization process needed for multiple probes with different protein scaffolds.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Molecular , Luz , Fotorreceptores Microbianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/efeitos da radiação , Cor , Cianobactérias/genética , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Mutagênese Sítio-Dirigida , Nostoc/genética , Nostoc/metabolismo , Nostoc/efeitos da radiação , Fotobiologia/métodos , Fotorreceptores Microbianos/efeitos da radiação , Biologia Sintética/métodos , Tetrapirróis/metabolismo
11.
New Phytol ; 225(6): 2283-2300, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31595505

RESUMO

Canonical plant phytochromes are master regulators of photomorphogenesis and the shade avoidance response. They are also part of a widespread superfamily of photoreceptors with diverse spectral and biochemical properties. Plant phytochromes belong to a clade including other phytochromes from glaucophyte, prasinophyte, and streptophyte algae (all members of the Archaeplastida) and those from cryptophyte algae. This is consistent with recent analyses supporting the existence of an AC (Archaeplastida + Cryptista) clade. AC phytochromes have been proposed to arise from ancestral cyanobacterial genes via endosymbiotic gene transfer (EGT), but most recent studies instead support multiple horizontal gene transfer (HGT) events to generate extant eukaryotic phytochromes. In principle, this scenario would be compared to the emerging understanding of early events in eukaryotic evolution to generate a coherent picture. Unfortunately, there is currently a major discrepancy between the evolution of phytochromes and the evolution of eukaryotes; phytochrome evolution is thus not a solved problem. We therefore examine phytochrome evolution in a broader context. Within this context, we can identify three important themes in phytochrome evolution: deletion, duplication, and diversification. These themes drive phytochrome evolution as organisms evolve in response to environmental challenges.


Assuntos
Evolução Biológica , Cianobactérias/genética , Genes de Plantas , Filogenia , Fitocromo/genética , Fenômenos Fisiológicos Vegetais/genética , Plantas/genética , Duplicação Gênica , Transferência Genética Horizontal , Fitocromo/metabolismo , Plantas/metabolismo , Deleção de Sequência , Simbiose
12.
Proc Natl Acad Sci U S A ; 115(52): E12378-E12387, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30552139

RESUMO

Many cyanobacteria, which use light as an energy source via photosynthesis, have evolved the ability to guide their movement toward or away from a light source. This process, termed "phototaxis," enables organisms to localize in optimal light environments for improved growth and fitness. Mechanisms of phototaxis have been studied in the coccoid cyanobacterium Synechocystis sp. strain PCC 6803, but the rod-shaped Synechococcus elongatus PCC 7942, studied for circadian rhythms and metabolic engineering, has no phototactic motility. In this study we report a recent environmental isolate of S. elongatus, the strain UTEX 3055, whose genome is 98.5% identical to that of PCC 7942 but which is motile and phototactic. A six-gene operon encoding chemotaxis-like proteins was confirmed to be involved in phototaxis. Environmental light signals are perceived by a cyanobacteriochrome, PixJSe (Synpcc7942_0858), which carries five GAF domains that are responsive to blue/green light and resemble those of PixJ from Synechocystis Plate-based phototaxis assays indicate that UTEX 3055 uses PixJSe to sense blue and green light. Mutation of conserved functional cysteine residues in different GAF domains indicates that PixJSe controls both positive and negative phototaxis, in contrast to the multiple proteins that are employed for implementing bidirectional phototaxis in Synechocystis.


Assuntos
Fotorreceptores Microbianos/metabolismo , Fototaxia/fisiologia , Synechococcus/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Fotorreceptores Microbianos/química , Synechococcus/fisiologia , Synechocystis/metabolismo
14.
J Phys Chem Lett ; 9(12): 3454-3462, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29874080

RESUMO

Phytochrome proteins utilize ultrafast photoisomerization of a linear tetrapyrrole chromophore to detect the ratio of red to far-red light. Femtosecond photodynamics in the PAS-GAF-PHY photosensory core of the Cph1 phytochrome from Synechocystis sp. PCC6803 (Cph1Δ) were resolved with a dual-excitation-wavelength-interleaved pump-probe (DEWI) approach with two excitation wavelengths (600 and 660 nm) at three pH values (6.5, 8.0, and 9.0). Observed spectral and kinetic heterogeneity in the excited-state dynamics were described with a self-consistent model comprised of three spectrally distinct populations with different protonation states (Pr-I, Pr-II, and Pr-III), each composed of multiple kinetically distinct subpopulations. Apparent partitioning among these populations is dictated by pH, temperature, and excitation wavelength. Our studies provide insight into photocycle initiation dynamics at physiological temperatures, implicate the low-pH/low-temperature Pr-I state as the photoactive state in vitro, and implicate an internal hydrogen-bonding network in regulating the photochemical quantum yield.

15.
J Biol Chem ; 293(22): 8473-8483, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29632072

RESUMO

Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in nonphotosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleus sp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibits a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for the design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells, tissues, and whole organisms with light across the visible spectrum and into the near IR.


Assuntos
Adenilil Ciclases/metabolismo , Cianobactérias/enzimologia , AMP Cíclico/metabolismo , Flavinas/metabolismo , Regulação Enzimológica da Expressão Gênica , Luz , Adenilil Ciclases/genética , Domínio Catalítico , Flavinas/química , Mutação , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Transdução de Sinais
16.
Proc Natl Acad Sci U S A ; 115(17): 4387-4392, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632180

RESUMO

Phytochrome photoreceptors control plant growth, development, and the shade avoidance response that limits crop yield in high-density agricultural plantings. Cyanobacteriochromes (CBCRs) are distantly related photosensory proteins that control cyanobacterial metabolism and behavior in response to light. Photoreceptors in both families reversibly photoconvert between two photostates via photoisomerization of linear tetrapyrrole (bilin) chromophores. Spectroscopic and biochemical studies have demonstrated heterogeneity in both photostates, but the structural basis for such heterogeneity remains unclear. We report solution NMR structures for both photostates of the red/green CBCR NpR6012g4 from Nostoc punctiforme In addition to identifying structural changes accompanying photoconversion, these structures reveal structural heterogeneity for residues Trp655 and Asp657 in the red-absorbing NpR6012g4 dark state, yielding two distinct environments for the phycocyanobilin chromophore. We use site-directed mutagenesis and fluorescence and absorbance spectroscopy to assign an orange-absorbing population in the NpR6012g4 dark state to the minority configuration for Asp657. This population does not undergo full, productive photoconversion, as shown by time-resolved spectroscopy and absorption spectroscopy at cryogenic temperature. Our studies thus elucidate the spectral and photochemical consequences of structural heterogeneity in a member of the phytochrome superfamily, insights that should inform efforts to improve photochemical or fluorescence quantum yields in the phytochrome superfamily.


Assuntos
Proteínas de Bactérias/química , Nostoc/química , Fitocromo/química , Proteínas de Bactérias/genética , Mutagênese Sítio-Dirigida , Nostoc/genética , Fitocromo/genética , Domínios Proteicos
17.
Biochemistry ; 57(18): 2636-2648, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29633829

RESUMO

Forward and reverse primary (<10 ns) and secondary (>10 ns) photodynamics of cyanobacteriochrome (CBCR) NpF2164g7 were characterized by global analysis of ultrafast broadband transient absorption measurements. NpF2164g7 is the most C-terminal bilin-binding GAF domain in the Nostoc punctiforme phototaxis sensor PtxD (locus Npun_F2164). Although a member of the canonical red/green CBCR subfamily phylogenetically, NpF2164g7 exhibits an orange-absorbing 15ZPo dark-adapted state instead of the typical red-absorbing 15ZPr dark-adapted state characteristic of this subfamily. The green-absorbing 15EPg photoproduct of NpF2164g7 is unstable, allowing this CBCR domain to function as a power sensor. Photoexcitation of the 15ZPo state triggers inhomogeneous excited-state dynamics with three spectrally and temporally distinguishable pathways to generate the light-adapted 15EPg state in high yield (estimated at 25-30%). Although observed in other CBCR domains, the inhomogeneity in NpF2164g7 extends far into secondary relaxation dynamics (10 ns -1 ms) through to formation of 15EPg. In the reverse direction, the primary dynamics after photoexcitation of 15EPg are qualitatively similar to those of other red/green CBCRs, but secondary dynamics involve a "pre-equilibrium" step before regenerating 15ZPo. The anomalous photodynamics of NpF2164g7 may reflect an evolutionary adaptation of CBCR sensors that function as broadband light intensity sensors.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/química , Nostoc/química , Fotorreceptores Microbianos/química , Cinética , Luz , Processos Fotoquímicos , Fototaxia/efeitos dos fármacos , Fototaxia/efeitos da radiação
18.
Biochemistry ; 56(46): 6145-6154, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29072834

RESUMO

Phytochromes and cyanobacteriochromes (CBCRs) use double-bond photoisomerization of their linear tetrapyrrole (bilin) chromophores within cGMP-specific phosphodiesterases/adenylyl cyclases/FhlA (GAF) domain-containing photosensory modules to regulate activity of C-terminal output domains. CBCRs exhibit photocycles that are much more diverse than those of phytochromes and are often found in large modular proteins such as Tlr0924 (SesA), one of three blue light regulators of cell aggregation in the cyanobacterium Thermosynechococcus elongatus. Tlr0924 contains a single bilin-binding GAF domain adjacent to a C-terminal diguanylate cyclase (GGDEF) domain whose catalytic activity requires formation of a dimeric transition state presumably supported by a multidomain extension at its N-terminus. To probe the structural basis of light-mediated signal propagation from the photosensory input domain to a signaling output domain for a representative CBCR, these studies explore the properties of a bidomain GAF-GGDEF construct of Tlr0924 (Tlr0924Δ) that retains light-regulated diguanylate cyclase activity. Surprisingly, circular dichroism spectroscopy and size exclusion chromatography data do not support formation of stable dimers in either the blue-absorbing 15ZPb dark state or the green-absorbing 15EPg photoproduct state of Tlr0924Δ. Analysis of variants containing site-specific mutations reveals that proper signal transmission requires both chromophorylation of the GAF domain and individual residues within the amphipathic linker region between GAF and GGDEF domains. On the basis of these data, we propose a model in which bilin binding and light signals are propagated from the GAF domain via the linker to alter the equilibrium and interconversion dynamics between active and inactive conformations of the GGDEF domain to favor or disfavor formation of catalytically competent dimers.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , GMP Cíclico/análogos & derivados , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/química , Pigmentos Biliares/metabolismo , Cianobactérias/citologia , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Luz , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Domínios Proteicos , Multimerização Proteica
19.
J Plant Physiol ; 217: 57-67, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28641882

RESUMO

Linear tetrapyrroles (bilins) are produced from heme by heme oxygenase, usually forming biliverdin IXα (BV). Fungi and bacteria use BV as chromophore for phytochrome photoreceptors. Oxygenic photosynthetic organisms use BV as a substrate for ferredoxin-dependent bilin reductases (FDBRs), enzymes that produce diverse reduced bilins used as light-harvesting pigments in phycobiliproteins and as photoactive photoreceptor chromophores. Bilin biosynthesis is essential for phototrophic growth in Chlamydomonas reinhardtii despite the absence of phytochromes or phycobiliproteins in this organism, raising the possibility that bilins are more generally required for phototrophic growth by algae. We here leverage the recent expansion in available algal transcriptomes, cyanobacterial genomes, and environmental metagenomes to analyze the distribution and diversification of FDBRs. With the possible exception of euglenids, FDBRs are present in all photosynthetic eukaryotic lineages. Phylogenetic analysis demonstrates that algal FDBRs belong to the three previously recognized FDBR lineages. Our studies provide new insights into FDBR evolution and diversification.


Assuntos
Pigmentos Biliares/metabolismo , Chlamydomonas reinhardtii/metabolismo , Ferredoxinas/metabolismo , Oxirredutases/metabolismo , Bactérias/metabolismo , Bacteriófagos/metabolismo , Evolução Biológica , Cianobactérias/metabolismo , Fotossíntese , Filogenia , Alinhamento de Sequência
20.
Curr Opin Plant Biol ; 37: 87-93, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28445833

RESUMO

Phytochromes control almost every aspect of plant biology, including germination, growth, development, and flowering, in response to red and far-red light. These photoreceptors thus hold considerable promise for engineering crop plant responses to light. Recently, structural research has shed new light on how phytochromes work. Genomic and transcriptomic studies have improved our understanding of phytochrome loss, retention, and diversification during evolution. We are also beginning to understand phytochrome function in cyanobacteria and eukaryotic algae.


Assuntos
Cianobactérias/metabolismo , Fitocromo/metabolismo , Cianobactérias/genética , Genômica/métodos , Fotorreceptores de Plantas/genética , Fitocromo/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...